

Figure 5B. LPV:BMS-232632 = 16:1

CONCLUSIONS

In vitro (in the presence of 10% fetal calf serum), the combined action of lopinavir and saquinavir is statistically significantly synergistic.

- In contrast the combined action of lopinavir and the other protease inhibitors tested was found to be additive.

With the exception of one combination of LPV and NFV, no antagonistic antiviral effect was observed.
The observed in vitro synergy between LPV and SQV provides a basis for the clinical exploration of a novel, class-sparing regimen of Kaletra" and Fortovase although the mechanism for this observation is unclear

REFERENCES

Combination indices, with 95% two-sided confidence intervals between LPV and the other PIs were determined using statistical methods (Table 2),
the 95% confidence interval overlapped a combination index of one, the combined action was juaged to be additive. If the 95% confidence interval did not overlap a (upper bound of conifidence interva<<) or antagonistic (lower bound of confidence interval >1 1). Based on combination indices for percent of inhibition between 0.50 and 0.99 , the combination of LPV with IDV, APV, TPV and BMS-232632 was additive. In the case of
LPV with NFV, four combination ratios were found to be additive; however, one combination ratio (1:1) was slighty antagonistic (lower bound of 95% confidence interval 1.01-1.05).

In contrast, at all five combination ratios tested, the combined action of LPV and SQV was statistically significantly synergistic.

Table 2. Combination Indices for Combined Action of Lopinavir [LPV] and Another Protease Inhibitor [PI]

PI	Concentration Ratio [LPV vs. PI]	Percent Inhibilion [95\% Conitience Intervals]			
		50	75	90	95
sov	1:2	0.86 [0.76, 0.97]	0.79 [0.64, 0.94]	0.72 [0.53, 0.92]	$0.688[0.46,0.91]$
	1:1	0.88 [0.79, 0.98]	$0.82[0.69,0.95]$	$0.76[0.60,0.93]$	0.72 [0.53, 0.91]
	2:1	0.81 [0.73, 0.90]	$0.7770 .64,0.90]$	0.73 [0.57, 0.89]	$0.70[0.52,0.89]$
	4:1	0.85 [0.77, 0.94]	$0.7770 .666,0.88]$	$0.70[0.56,0.84]$	$0.66[0.49,0.82]$
	8:1	0.87 [0.79, 0.94]	$0.7990 .69,0.90]$	0.73 [0.59, 0.87$]$	0.69 [0.53, 0.84]
IDV	1:10	$0.94[0.85,1.03]$	0.83 [0.71, 0.94]	0.73 [0.58, 0.88]	0.67 [0.50, 0.83]
	1:5	${ }^{0.9990 .090, ~ 1.08] ~}$	$0.94[0.81,1.07]$	$0.89[0.72,1.07]$	$0.86[0.66,1.07]$
	1:3	1.04 [0.94, 1.14]	$1.03[0.88,7.17]$	$1.02[0.83,1.21]$	1.01 [0.77, 1.25]
	1:1	$1.01[0.92,1.10]$	0.97 [0.84, 1.10]	0.93 [0.75, 1.10]	0.90 [0.70, 1.10]
	2:1	$1.04[0.93,1.14]$	0.98 [0.83, 1.13]	0.93 [0.72, 1.14]	$0.90[0.64,1.15]$
APV	1:10	$0.96[0.86,1.06]$	0.90 [0.76, 1.04]	0.84 [0.66, 1.03]	0.81 [0.59, 1.02]
	$1: 5$	0.98 [0.88, 1.08]	$0.94[0.81,1.08]$	0.91 [0.72, 1.10]	0.88 [0.67, 1.10]
	1:3	$1.0000 .91,1.09]$	1.04 [0.90, 1.18]	1.08 [0.88, 1.28]	1.10 [0.84, 1.36]
	1:1	1.01 [0.91, 1.12]	$0.94[0.80,1.08]$	0.87 [0.69, 1.05]	0.82 [0.62, 1.03]
	2:1	$0.96[0.86,1.06]$	0.86 [0.72, 0.99]	$0.7770 .600 .0 .93]$	0.71 [0.52, 0.90]
NFV	$1: 4$	1.09 [0.97, 1.22]	1.06 [0.88, 1.25]	1.03 [0.77, 1.29]	1.01 [0.71, 1.32]
	1:2	$0.95[0.86,1.04]$	$0.92[0.79,1.05]$	${ }^{0.90}[0.7 .72,1.07]$	0.87 [0.67, 1.08]
	1:1	1.11 [1.00, 1.21]	$1.20[1.04,1.36]$	${ }^{1.30}[1.05,1.56]$	1.38 [1.05, 1.71]
	2:1	$\left.{ }_{0} .0990 .900,1.09\right]$	0.98 [0.84, 1.11]	0.96 [0.77, 1.15]	0.95 [0.72, 1.18]
	4:1	0.98 [0.88, 1.08$]$	$0.94[0.80,1.08]$	$0.90[0.71,1.09]$	0.87 [0.65, 1.10]
BMS-23632	2:1	$1.06[0.97,1.15]$	1.03 [0.90, 1.15]	0.99 [0.82, 1.16]	0.97 [0.76, 1.17]
	4.1	${ }_{0} 0.93$ [0.86, 1.01]	0.886 [0.76, 0.96]	0.79 [0.66, 0.92]	0.75 [0.60, 0.90]
	8:1	$1.05[0.96,1.14]$	1.04 [0.91, 1.16]	$1.02[0.85,1.20]$	1.01 [0.81, 1.22]
	16:1	0.97 [0.88, 1.06$]$	0.89 [0.77, 1.01]	$0.82[0.66,0.97]$	0.77 [0.60, 0.94]
	32:1	$0.91[0.83,1.00]$	$0.82[0.70,0.93]$	0.73 [0.59, 0.87]	0.68 [0.52, 0.84]
TPV	1:30? 32	0.85 [0.79, 0.92]	0.77 [0.69, 0.86]	0.70 [0.59, 0.81]	0.66 [0.54, 0.78]
	1:15? 16	$0.92[0.84,0.99]$	0.86 [0.77, 0.96]	0.82 [0.99, 0.95]	0.79 [0.63, 0.94]
	1:8	${ }^{0.9990 .091, ~ 1.07] ~}$	$0.99[0.88,1.10]$	$0.99[0.84,1.15]$	1.00 [0.81, 1.19]
	1:4	${ }^{0.9990 .900, ~ 1.07] ~}$	$0.95[0.84,1.07]$	0.93 [0.77, 1.08]	$0.91[0.72,1.09]$
	1:2	0.93 [0.85, 1.01]	0.87 [0.76, 0.99]	0.82 [0.67, 0.97]	0.78 [0.61, 0.96]

The graphs of combination index vs. fraction of inhibition for the five combinations of LPV and SQV are provided in Figure 1. In each case, statistically significan synergy was observed at concentrations producing $>50 \%$ inhibition.

figure 1C. LPV:SQV = 2:1
igure 1D. LPV:SQV = 4:1

